Riemannian Means on Special Euclidean Group and Unipotent Matrices Group

نویسندگان

  • Xiaomin Duan
  • Huafei Sun
  • Linyu Peng
چکیده

Among the noncompact matrix Lie groups, the special Euclidean group and the unipotent matrix group play important roles in both theoretic and applied studies. The Riemannian means of a finite set of the given points on the two matrix groups are investigated, respectively. Based on the left invariant metric on the matrix Lie groups, the geodesic between any two points is gotten. And the sum of the geodesic distances is taken as the cost function, whose minimizer is the Riemannian mean. Moreover, a Riemannian gradient algorithm for computing the Riemannian mean on the special Euclidean group and an iterative formula for that on the unipotent matrix group are proposed, respectively. Finally, several numerical simulations in the 3-dimensional case are given to illustrate our results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices

In this work we present a new generalization of the geometric mean of positive numbers on symmetric positive-definite matrices, called Log-Euclidean. The approach is based on two novel algebraic structures on symmetric positive-definite matrices: first, a lie group structure which is compatible with the usual algebraic properties of this matrix space; second, a new scalar multiplication that sm...

متن کامل

TECHNICAL REPORT Newton Algorithms for Riemannian Distance Related Problems on Connected Locally Symmetric Manifolds

The squared distance function is one of the standard functions on which an optimization algorithm is commonly run, whether it is used directly or chained with other functions. Illustrative examples include center of mass computation, implementation of k-means algorithm and robot positioning. This function can have a simple expression (as in the Euclidean case), or it might not even have a close...

متن کامل

Reconstructing Karcher Means of Shapes on a Riemannian Manifold of Metrics and Curvatures

In a recent paper [1], the authors suggest a novel Riemannian framework for comparing shapes. In this framework, a simple closed surface is represented by a field of metric tensors and curvatures. A product Riemannian metric is developed based on the L norm on symmetric positive definite matrices and scalar fields. Taken as a quotient space under the group of volume-preserving diffeomorphisms, ...

متن کامل

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

A Non-integrable Subriemannian Geodesic Flow on a Carnot Group

AND Abstract. Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geo-desic ow on any Carnot group is completely integrable. We prove this co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013